Kubernetes Deployment¶
Deploy servemd to Kubernetes or k3s clusters.
Prerequisites¶
- Kubernetes cluster (k3s, k8s, GKE, EKS, AKS, etc.)
kubectlconfigured- Docker image pushed to a registry (see User Dockerfile)
Quick Deployment¶
Option 1: Using Your Custom Image¶
If you've built a custom image with your docs bundled:
# deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: docs-server
labels:
app: docs-server
spec:
replicas: 2
selector:
matchLabels:
app: docs-server
template:
metadata:
labels:
app: docs-server
spec:
containers:
- name: docs-server
image: ghcr.io/mycompany/docs:latest
ports:
- containerPort: 8080
env:
- name: BASE_URL
value: "https://docs.mycompany.com"
- name: DEBUG
value: "false"
resources:
requests:
memory: "128Mi"
cpu: "100m"
limits:
memory: "256Mi"
cpu: "200m"
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 10
periodSeconds: 30
readinessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 5
periodSeconds: 10
---
apiVersion: v1
kind: Service
metadata:
name: docs-server
spec:
selector:
app: docs-server
ports:
- protocol: TCP
port: 80
targetPort: 8080
type: ClusterIP
Deploy:
kubectl apply -f deployment.yaml
Option 2: Using Base Image + ConfigMap¶
If you want to keep docs separate from the image:
# configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: docs-content
data:
index.md: |
# Welcome to Our Documentation
This is served from a ConfigMap!
sidebar.md: |
# Navigation
- [Home](index.html)
- [Features](features.html)
topbar.md: |
# Documentation
[GitHub](https://github.com/mycompany/project)
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: docs-server
spec:
replicas: 2
selector:
matchLabels:
app: docs-server
template:
metadata:
labels:
app: docs-server
spec:
containers:
- name: docs-server
image: ghcr.io/yourusername/servemd:latest
ports:
- containerPort: 8080
volumeMounts:
- name: docs-volume
mountPath: /app/docs
volumes:
- name: docs-volume
configMap:
name: docs-content
---
apiVersion: v1
kind: Service
metadata:
name: docs-server
spec:
selector:
app: docs-server
ports:
- protocol: TCP
port: 80
targetPort: 8080
Deploy:
kubectl apply -f configmap.yaml
Option 3: Using PersistentVolume¶
For larger documentation sets stored in persistent storage:
# pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: docs-pvc
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: docs-server
spec:
replicas: 2
selector:
matchLabels:
app: docs-server
template:
metadata:
labels:
app: docs-server
spec:
containers:
- name: docs-server
image: ghcr.io/yourusername/servemd:latest
ports:
- containerPort: 8080
volumeMounts:
- name: docs-storage
mountPath: /app/docs
volumes:
- name: docs-storage
persistentVolumeClaim:
claimName: docs-pvc
Ingress Configuration¶
NGINX Ingress¶
# ingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: docs-ingress
annotations:
kubernetes.io/ingress.class: "nginx"
cert-manager.io/cluster-issuer: "letsencrypt-prod"
spec:
tls:
- hosts:
- docs.mycompany.com
secretName: docs-tls
rules:
- host: docs.mycompany.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: docs-server
port:
number: 80
Apply:
kubectl apply -f ingress.yaml
Traefik Ingress (k3s default)¶
# ingress-traefik.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: docs-ingress
annotations:
traefik.ingress.kubernetes.io/router.entrypoints: websecure
traefik.ingress.kubernetes.io/router.tls: "true"
cert-manager.io/cluster-issuer: "letsencrypt-prod"
spec:
rules:
- host: docs.mycompany.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: docs-server
port:
number: 80
tls:
- hosts:
- docs.mycompany.com
secretName: docs-tls
Complete k3s Example¶
Perfect for edge computing and home labs:
# 1. Install k3s (if not already installed)
curl -sfL https://get.k3s.io | sh -
# 2. Save this as docs-k3s.yaml
cat <<EOF > docs-k3s.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: docs-server
namespace: default
spec:
replicas: 1
selector:
matchLabels:
app: docs-server
template:
metadata:
labels:
app: docs-server
spec:
containers:
- name: docs-server
image: ghcr.io/mycompany/docs:latest
imagePullPolicy: Always
ports:
- containerPort: 8080
env:
- name: BASE_URL
value: "https://docs.mycompany.com"
---
apiVersion: v1
kind: Service
metadata:
name: docs-server
namespace: default
spec:
selector:
app: docs-server
ports:
- port: 80
targetPort: 8080
---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: docs-ingress
namespace: default
annotations:
traefik.ingress.kubernetes.io/router.entrypoints: web
spec:
rules:
- host: docs.local
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: docs-server
port:
number: 80
EOF
# 3. Deploy
kubectl apply -f docs-k3s.yaml
# 4. Add to /etc/hosts for local testing
echo "127.0.0.1 docs.local" | sudo tee -a /etc/hosts
# 5. Visit http://docs.local
Helm Chart¶
Create a reusable Helm chart:
# Chart.yaml
apiVersion: v2
name: servemd-docs
description: Helm chart for ServeM documentation server
type: application
version: 1.0.0
appVersion: "1.0.0"
# values.yaml
replicaCount: 2
image:
repository: ghcr.io/mycompany/docs
tag: latest
pullPolicy: Always
service:
type: ClusterIP
port: 80
ingress:
enabled: true
className: nginx
annotations:
cert-manager.io/cluster-issuer: "letsencrypt-prod"
hosts:
- host: docs.mycompany.com
paths:
- path: /
pathType: Prefix
tls:
- secretName: docs-tls
hosts:
- docs.mycompany.com
env:
BASE_URL: "https://docs.mycompany.com"
DEBUG: "false"
resources:
requests:
memory: "128Mi"
cpu: "100m"
limits:
memory: "256Mi"
cpu: "200m"
Install:
helm install my-docs ./servemd-docs
GitOps with ArgoCD¶
# argocd-application.yaml
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
name: docs-server
namespace: argocd
spec:
project: default
source:
repoURL: https://github.com/mycompany/docs
targetRevision: HEAD
path: k8s
destination:
server: https://kubernetes.default.svc
namespace: default
syncPolicy:
automated:
prune: true
selfHeal: true
CI/CD Integration¶
GitHub Actions + kubectl¶
# .github/workflows/deploy-k8s.yml
name: Deploy to Kubernetes
on:
push:
branches: [main]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Build and push Docker image
run: |
docker build -t ghcr.io/${{ github.repository }}/docs:${{ github.sha }} .
echo ${{ secrets.GITHUB_TOKEN }} | docker login ghcr.io -u ${{ github.actor }} --password-stdin
docker push ghcr.io/${{ github.repository }}/docs:${{ github.sha }}
- name: Set up kubectl
uses: azure/setup-kubectl@v3
- name: Configure kubectl
run: |
echo "${{ secrets.KUBECONFIG }}" | base64 -d > kubeconfig.yaml
export KUBECONFIG=kubeconfig.yaml
- name: Deploy to k8s
run: |
kubectl set image deployment/docs-server docs-server=ghcr.io/${{ github.repository }}/docs:${{ github.sha }}
kubectl rollout status deployment/docs-server
Monitoring¶
Prometheus Metrics (Future)¶
The server includes a /health endpoint. You can extend it to expose Prometheus metrics:
apiVersion: v1
kind: Service
metadata:
name: docs-server
labels:
app: docs-server
annotations:
prometheus.io/scrape: "true"
prometheus.io/port: "8080"
prometheus.io/path: "/health"
spec:
selector:
app: docs-server
ports:
- port: 80
targetPort: 8080
Scaling¶
Horizontal Pod Autoscaler¶
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: docs-server-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: docs-server
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
Next Steps¶
- Cloud Platforms - Deploy to managed services
- User Dockerfile - Build custom images
- Configuration - Environment variables